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Abstract

The classic "elastic band" deforms a path generated by a global planner with respect to the shortest path length while
avoiding contact with obstacles. It does not take any dynamic constraints of the underlying robot into account directly.
This contribution introduces a new approach called "timed elastic band" which explicitly considers temporal aspects of
the motion in terms of dynamic constraints such as limited robot velocities and accelerations. The "timed elastic band"
problem is formulated in a weighted multi-objective optimization framework. Most objectives are local as they depend
on a few neighboring intermediate configurations. This results in a sparse system matrix for which efficient large-scale
constrained least squares optimization methods exist.
Results from simulations and experiments with a real robot demonstrate that the approach is robust and computationally
efficient to generate optimal robot trajectories in real time. The "timed elastic band" converts an initial path composed of
a sequence of way points into a trajectory with explicit dependence on time which enables the control of the robot in real
time. Due to its modular formulation the approach is easily extended to incorporate additional objectives and constraints.

1 Introduction

Motion planning is concerned with finding of a collision
free trajectory that respects the kinematic and dynamic mo-
tion constraints.
In the context of motion planning this paper focuses on
local path modification assuming that an initial path has
been generated by a global planner [1]. In particular in the
context of service robotics the modification of a path is a
preferable approach due to the inherent uncertainty of the
dynamic environment since the environment may be dy-
namic. Also, the model of the environment may subject to
change due to partial, incomplete maps and dynamic ob-
stacles. Furthermore, the (re-)computation of a large scale
global path is often not feasible in real-time applications.
This observation leads to approaches which modify a path
locally, such as the "elastic band" proposed by [2, 3]. The
main idea of the "elastic band" approach is to deform an
originally given path by considering it as an elastic rubber
band subject to internal and external forces which balance
each other in the attempt to contract the path while keeping
a distance from obstacles.
Later this approach was extended to non-holonomic kine-
matics [4, 5, 6], robotic systems with many degrees of free-
dom [7] and dynamics obstacles [8]. However, to our best
knowledge dynamic motion constraints have not yet been
considered as an objective in path deformation. The typical
approach is to smoothen the path for example with splines

to obtain dynamically feasible trajectories.
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Figure 1: Robot system with "timed elastic band"

Our approach, called "timed elastic band" is novel as it
explicitly augments "elastic band" with temporal informa-
tion, thus allowing the consideration of the robot’s dy-
namic constraints and direct modification of trajectories
rather than paths. Figure 1 shows the architecture of a
robot system with the "timed elastic band". By considering
the temporal information, the "timed elastic band" can be
used to control also the velocites and accelerations of the
robot. The new approach is suitable for high dimensional
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state spaces even though this paper considers a differential
drive mobile robot moving in a planar environment with
three global and two local degrees of freedom.

2 Timed Elastic Band

The classic "elastic band" is described in terms of a se-
quence of n intermediate robot poses xi = (xi, yi, βi)

T ∈
R

2 × S1, in the following denoted as a configuration in-
cluding position xi, yi and orientation βi of the robot in
the related frame ({map}, Fig. 2):

Q = {xi}i=0...n n ∈ N (1)

The "timed elastic band" (TEB) is augmented by the time
intervals between two consecutive configurations, result-
ing in a sequence of n− 1 time differences ΔTi:

τ = {ΔTi}i=0...n−1 (2)

Each time difference denotes the time that the robot re-
quires to transit from one configuration to the next config-
uration in sequence (Fig. 2). The TEB is defined as a tuple
of both sequences:

B := (Q, τ) (3)

The key idea is to adapt and optimize the TEB in terms of
both configurations and time intervals by a weighted multi-
objective optimization in real-time:

f(B) =
∑
k

γkfk(B) (4)

B∗ = argmin
B

f(B) (5)

in which B∗ denotes the optimized TEB, f(B) denotes
the objective function. In this paper it is a weighted sum of
components fk which capture the various aspects. This is
the most elementary approach to multi-objective optimiza-
tion, but already it yields very good results. In future work,
more sophisticated approaches might be investigated.

Figure 2: TEB: sequences of configurations and time dif-
ferences

The majority of components of the objective function are
local with respect to B as they only depend on a few
number of consecutive configurations rather than the en-
tire band. This property of locality of TEB results in a
sparse system matrix, for which specialized fast and effi-
cient large scale numerical optimization methods are avail-
able [11].
The objective functions of the TEB belong to two types:
constraints such as velocity and acceleration limits formu-
lated in terms of penalty functions and objectives with re-
spect to trajectory such as shortest or fastest path (Eq. 18)
or clearance from obstacles (Eq. 8). Sparse constrained
optimization algorithms are not readily available in robotic
frameworks (e.g. ROS) in a freely usable implementation.
Therefore, in the context of "timed elastic band" these con-
straints are formulated as objectives in terms of a piecewise
continuous, differentiable cost function that penalize the
violation of a constraint (Eq. 6).

eΓ(x, xr, ε, S, n) �
{
(x−(xr−ε)

S )n if x > xr − ε

0 otherwise
(6)

xr denotes the bound. S, n and ε affect the accuracy of the
approximation. Especially S expresses the scaling, n the
polynomial order and ε a small translation of the approxi-
mation.
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Figure 3: Polynomial approximation of constraints

Figure 3 shows two different realizations of Eq. 6. Ap-
proximation 1 results from parameter-set n = 2, S = 0.1,
ε = 0.1 and Approximation 2, which is conspicuously a
stronger approximation, result from parameter-set n = 2,
S = 0.05 and ε = 0.1. This example shows an approxima-
tion of the constraint xr = 0.4.
An obvious advantage of using a multi-objective optimiza-
tion framework is the modular formulation of objective
functions. The objective functions currently employed in
the TEB are listed below.

2.1 Way points and obstacles

The TEB simultaneously accounts for the attainment of the
intermediate way points of the original path and the avoid-
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ance of static or dynamic obstacles. Both objective func-
tions are similar with the difference that way points attract
the elastic band whereas obstacles repel it. The objective
function rests upon the minimal separation dmin,j between
the TEB and the way point or obstacle zj (Fig. 4). In the
case of way points the distance is bounded from above by
a maximal target radius rpmax

(Eq. 7) and in case of obsta-
cles it is bounded from below by a minimal distance romin

(Eq. 8). These constraints are implemented by the penalty
function in Eq. 6.

fpath = eΓ(dmin,j , rpmax
, ε, S, n) (7)

fob = eΓ(−dmin,j ,−romin
, ε, S, n) (8)

According to Fig. 3, the signs of the separation dmin,j and
the bound romin

in Eq. 8 must be swapped to realize a
bounding from below.
Notice, that the gradient of these objective functions can be
interpreted as an external force acting on the elastic band.

Figure 4: Minimal distance between TEB and way point
or obstacle

2.2 Velocity and acceleration

Dynamic constraints on robot velocity and acceleration
are described by similar penalty function as in the case
of geometric constraints. Figure 2 shows the structure of
TEB. The mean translational and rotational velocities are
computed according to the euclidean or angular distance
between two consecutive configurations xi,xi+1 and the
time interval ΔTi for the transition between both poses.

vi � 1

ΔTi
‖
(
xi+1 − xi

yi+1 − yi

)
‖ (9)

ωi � βi+1 − βi

ΔTi
(10)

Due to the vicinity of configurations the euclidean distance
is a sufficient approximation of the true length of the cir-
cular path between two consecutive poses. The accelera-
tion relates two consecutive mean velocities, thus consid-
ers three consecutive configurations with two correspond-

ing time intervals:

ai =
2(vi+1 − vi)

ΔTi +ΔTi+1
(11)

For the sake of clarity, the three consecutive configurations
are substituted by their two related velocities in Eq. 11.
The rotational acceleration is computed similar to Eq. 11
by considering rotational velocities instead of translational
ones. Considering a differential drive mobile robot, the
relationship between the wheel velocities and the transla-
tional and rotational velocities vi and ωi of the robot center
point are computed according to:

vwr,i = vi + Lωi (12)
vwl,i = vi − Lωi (13)

in which the parameter L denotes half of the robot wheel-
base.
Differentiating Eq. 12 and Eq. 13 with respect to time
leads to the corresponding wheel accelerations. The wheel
velocities and acceleration are bounded from above and
below according to the manufacturer specifications. The
translational and rotational inertia of the robot could be in-
cluded in an obvious way, but in this first implementation
we have not yet done so.

2.3 Non-holonomic kinematics

Figure 5: Relationship between configurations on a circle
for non-holonomic kinematics

Robots with a differential drive only possess two local de-
grees of freedom. Thus they can only execute motions in
the direction of the robot’s current heading. This kinematic
constraint leads to a smooth path that is composed of arc
segments. Thus two adjacent configurations are required
to be located on a common arc of constant curvature as
illustrated in Fig. 5: The angle ϑi between the initial con-
figuration xi and the direction di,i+1 has to be equal to the
corresponding angle ϑi+1 at the final configuration xi+1.
If βi denotes the absolute orientation of a robot at the i-th
configuration the arc condition demands:

ϑi = ϑi+1 (14)

⇔
⎛
⎝cosβi

sinβi

0

⎞
⎠× di,i+1 = di,i+1 ×

⎛
⎝cosβi+1

sinβi+1

0

⎞
⎠(15)
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with the direction vector:

di,i+1 :=

⎛
⎝xi+1 − xi

yi+1 − yi
0

⎞
⎠ (16)

The corresponding objective function

fk(xi,xi+1) =

∥∥∥∥∥
[⎛
⎝cosβi

sinβi

0

⎞
⎠+

⎛
⎝cosβi+1

sinβi+1

0

⎞
⎠]

× di,i+1

∥∥∥∥∥
2

(17)

penalizes the quadratic error in the violation of this con-
straint. A potential 180◦ orientation change is taken care
of with an extra term.

2.4 Fastest path

Previous "elastic band" approaches obtain the shortest path
by internal forces that contract the elastic band. Since our
approach considers temporal information the objective of
a shortest path we have the option to replace the objective
of a shortest path with that of a fastest path, or to combine
those objectives. The objective of a fastest path is easily
achieved by minimizing the square of the sum of all time
differences.

fk = (

n∑
i=1

ΔTi)
2 (18)

This objective leads to a fastest path in which the interme-
diate configurations are uniformly separated in time rather
than space.

2.5 Implementation

Figure 6 shows the control flow of the implemented TEB.
In the initialization-phase an initial path is enhanced to an
initial trajectory by adding default timing information re-
specting the dynamic and kinematic constraints. In our
case the initial trajectory is composed of piecewise linear
segments with a pure rotation followed by a translation.
Such a path representation in terms of a polygon is com-
monly provided by probabilistic roadmap planners [9]. Al-
ternatively, Reeds-Shepp-paths are easily enhanced to ad-
missible trajectories [10].
At each iteration, the algorithm dynamically adds new con-
figurations or deletes previous ones in order to adjust the
spatial and temporal resolution to the remaining trajectory
length or planning horizon. A hysteresis is implemented
to avoid oscillations. The optimization problem is trans-
formed into a hyper-graph and solved with large scale op-
timization algorithms for sparse systems which are con-
tained in the "g2o-framework" [11].
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Figure 6: Control flow of TEB-implementation

The required hyper-graph is a graph in which the amount of
connected nodes of one single edge is not limited. There-
fore an edge can connect more than two nodes. The TEB
problem (Eq. 4) can be transformed into a hyper-graph that
has configurations and time differences as nodes. They are
connected with edges representing given objective func-
tions fk or constraint functions. Figure 7 shows an ex-
ample hyper-graph with two configurations, one time dif-
ference and a point shaped obstacle. The velocity bound-
ing objective function requires the mean velocity which re-
lates to the euclidean distance between two configurations
and the required travel time. Hence it forms an edge con-
necting those states of B. The obstacle requires one edge
which is connected to the nearest configuration. The node
representing the obstacle is fixed (double circle), thus its
parameters (position) cannot be changed by optimization
algorithms.

After verifying the optimized TEB, control variables v and
ω can be calculated to directly command the robot drive
system. Before every new iteration, the re-initialization-
phase checks new and changing way-points which can be
useful if way-points are received after analyzing short-
range camera or laser-scan data.
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Figure 7: Velocity and obstacle objective function formu-
lated as a hyper-graph

3 Experiments and results

In this section we give a short outline of the experimental
results.
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Figure 8: TEB: Sparse system-matrix of a TEB realization

As illustrated in Fig. 8, the resulting TEB system-matrix is
still sparse with 15 percent of non-zero elements. In this
example, the first 141 states corresponds to 47 configura-
tions xi and states 142-189 are the related time differences
ΔTi. Those last states are related to the objective func-
tion which aim is to achieve the fastest trajectory, thus this
block is dense and grows quadratically with the dimension
of the TEB.

Figure 9: Trajectory with way points: constraint approx. 1

Figure 10: Trajectory with way points: constraint
approx. 2

Figure 9 and 10 show a scenario with four intermediate
way points. In the second scenario, the TEB employs a
stronger penalty for the violation of geometric constraints
according to Fig. 3 (Approximation 2), thus robot traverses
the way points more accurately. However, the solution that
employs a weaker penalty for constraint violations often
results in a smoother trajectory with less overshoot. De-
pending on the specific applications, tuning the weights al-
lows for shifting the emphasis between a more accurate
or a smoother and thereby faster trajectory. The dynamic
limitations (vmax = 1.4 m

s , amax = 0.4 m
s2 ) are taken into

account as shown in Fig. 11. A scenario with avoidance of
static obstacles is illustrated in Fig. 12.
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Figure 11: Velocity profile for scenario shown in fig.10

The augmentation of elastic bands with temporal informa-
tion and the availability of efficient large scale optimizers
for sparse systems allow for real-time trajectory adaptation
and control of the robot.
Figure 13 shows a sequence of snapshots from an exper-
iment with a Pioneer 2 robot in which a person walks
through the scene. The Pioneer 2 is controlled by a
Siemens Lifebook s6410 (Core2Duo, 2.4GHz, 2GBRAM)
and is equipped with a Hokuyo Laser Scanner to detect the
dynamic change of obstacle’s position. The TEB adapts
the original robots trajectory (t = 0) in real time and avoids
an imminent collision with the person during the interval
t ∈ [6, 12] by stretching the trajectory away from the ob-
stacle. The control cycle time is 25ms.
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Figure 12: Consider way points (Fig. 9) and obstacles

(a) t � 0 s (b) t � 6 s

(c) t � 11 s (d) t � 16 s

Figure 13: Avoiding a dynamic obstacle by real time adap-
tation of the TEB

4 Conclusion and further work

This paper presents a novel approach for real time trajec-
tory modification with timed elastic bands. It rests upon
the augmentation of the classic "elastic band" theory by
temporal information. The proposed method makes it pos-
sible to not only to consider geometric constraints on the
path but to simultaneously account for dynamic constraints
of the mobile robot. The algorithm operates in real-time
and thereby directly generates commands for the underly-
ing robot motion controller. The method is highly flexible
and is easily adapted to different robot kinematics and ap-
plication requirements.
Future work is concerned with the development of a sparse
constraint optimization framework, thus rendering the cur-
rent formulation of constraints in terms of penalty func-
tions obsolete. A different direction of research is to make
the elastic band "jump over obstacles". Technically the

approach is to surround an obstacle with a band with op-
posite orientation than the trajectory at the closest point,
glue them at tangential point and cut the resulting trajec-
tory at this point to obtain one that passes the obstacle on
the other side. After optimizing this trajectory, it is decided
on which side of the obstacle to continue. Note that this is
still a local optimization, not guaranteed to find global op-
tima.

References

[1] S. M. LaValle. Planning Algorithms, Cambridge
University Press, Cambridge, U.K., 2006.

[2] Quinlan, S.; Khatib, O. Elastic Bands: Connect-
ing Path Planning and Control, IEEE Int. Conf. on
Robotics and Automation (ICRA) (2), 1993

[3] Quinlan, S. Real-time modification of collision-free
paths, PhD thesis, Stanford University, 1994

[4] Khatib, M. Sensor-based motion control for mobile
robots, Laboratoire d’Automatique et d’Analyse des
Systèmes LAAS-CNRS, 1996

[5] Khatib, M. et al.Dynamic Path Modification for Car-
Like Nonholonomic Mobile Robots, IEEE Int. Conf.
on Robotics and Automation (ICRA), 1997

[6] Graf, B.; Wandosell, J.M.H.; Schaeffer, C. Flexi-
ble Path Planning for Nonholonomic Mobile Robots,
Fraunhofer Institute Manufacturing Engineering and
Automation (IPA), 2001

[7] Brock, O.; Khatib, O. Executing Motion Plans for
Robots with Many Degrees of Freedom in Dynamic
Environments, IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), 1998, pp. 1-6

[8] Fiorini, P.; Shiller, Z. Motion planning in dynamic
environments using velocity obstacles, International
Journal on Robotics Research, Vol. 17, No. 7, July
1998, pp. 760-772

[9] Kavraki, L.E. et al. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,
IEEE Transactions on Robotics and Automation, Vol.
12, No.4, August 1996, pp.566-580

[10] Reeds, J.A.; Shepp L.A. Optimal paths for a car that
goes both forwards and backwards, Pacific Journal
of Mathematics, Vol. 145, No. 2, 1990, pp. 367-393

[11] Kümmerle, R. et al. g2o: A General Framework for
Graph Optimization, Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), May 2011

79


